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Statistical distributions of the structural states of individual molecules of nonprocessive motor complexes
such as actomyosins are examined theoretically by considering a two-state stochastic model coupled by chemi-
cal reactions along the reaction coordinate representing the internal conformational states of the motor. The use
of a conformational reaction coordinate allows for the approximation of taking the rate constants as local in
their dependence on the reaction coordinate, and yields a simple analytic solution of the stationary states. The
approximation is also tested against numerical solutions with a nonlocal form of rate constants. The theory is
well-suited for computational treatments based on atomic structures of protein constituents using free energy
molecular dynamics simulations. With empirical sets of free energy functions, stationary distributions of forces
exerted by a motor head compare well with known experimental data.
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I. INTRODUCTION

Intensive research efforts have been put recently into un-
derstanding the operation of motor proteins with approaches
encompassing a wide range of different disciplines. From a
fundamental point of view, molecular motor protein com-
plexes such as myosin, kinesin, dynein, or F1-ATPases �1�
serve as model systems of how free energy transductions
occur in biological systems. Important roles are played both
by the stochasticity and irreversibility, each due to the na-
nometer range of length scales of their protein constituents
and the externally controlled nonequilibrium concentrations
of adenosine triphosphate �ATP�, adenosine diphosphate
�ADP�, and dissociated inorganic phosphates.

Theoretical considerations based on nonequilibrium sta-
tistical mechanics have played important roles in the devel-
opment of such understandings �2–19�. In particular, the
Brownian ratchet model, first described by Feynman as a
demonstration of the inevitable reversibility of any macro-
scopic movements driven by equilibrium fluctuations �20�,
has provided conceptual guidelines of how free energy trans-
ductions could become possible far from equilibrium. A pro-
totypical Brownian ratchet has external controls switching
the potential �of mean force, defined below� the Brownian
particle feels along a reaction coordinate x �the displacement
of a motor head on the linear track� between a flat profile and
an asymmetric profile �Fig. 1�a��, resulting in the nonzero
average net flux of the particle. Various different versions of
the ratchet models have been studied over the past decade
using methods of stochastic dynamics �2,3,6,9,13,18�.

A largely unresolved question, however, is how the key
mechanisms of such theoretical models are implemented in
reality within their protein constituents, for which studies
have been initiated for F1-ATPase and myosins only recently
�4,21,22�. The rapid growth in our structural knowledge of
the molecular details of the building blocks comprising the

motor complexes �23� is expected to provide us important
tests of theoretical models regarding their basic assumptions
as well as applicabilities to different specific systems. In this
paper, in particular, we argue that attentions to structural de-
tails should help resolve some of the issues that have arisen
within the studies of motor proteins. One of such issues is

*Author to whom correspondences should be addressed. Email
address: woo@chem.unr.edu

FIG. 1. �Color online� The Brownian ratchet and the power
stroke mechanisms as projections of two-dimensional free energy
landscapes Gi�x ,y� into one-dimensional axes. �a� In the Brownian
ratchet models, the stochastic variable x is defined as the linear
displacement of the motor protein center-of-mass along the track.
�b� The conformational changes of the motor protein occur via the
Brownian motion of the conformational reaction coordinate y. See
Fig. 3 for the interpretation of the arrows in �a� within the conven-
tional ratchet perspective.
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whether the Brownian ratchet models should be regarded as
representing an alternative mechanism �24� superseding the
traditional power stroke description exemplified by the
swinging lever arm model of muscle contractions �1,25,26�.
Qian �15� has pointed out that the issue of the roles played
by either the center-of-mass diffusive motion along the track
or the concerted intramolecular conformational changes of a
motor head is a quantitative question �the two representa-
tions in Fig. 1 become projections of a two-dimensional free
energy landscape�. Wang and Oster �27� have defined the
relative weights of the power stroke and ratchet characters of
a rotary motor in terms of the fractions of the work done on
the load by thermodynamic forces and by Brownian random
forces. We expand such a point of view in this paper and
show how the quantitative question could be answered by
adopting a structure-based theoretical viewpoint, supple-
mented by methods such as molecular simulations based on
known atomic structures.

A second primary aim of the paper is to examine the
approach of using the conformational reaction coordinate for
the stochastic dynamical model of motor proteins based on
the power stroke point of view, by integrating out the dis-
placement axis of the reaction coordinate space. The result-
ing version of the two-level stochastic model for nonproces-
sive motor proteins has direct connections to protein
structural states, making it particularly useful for future in-
corporations of molecular simulation results based on atomic
structures of proteins. In particular, we use the approxima-
tion of taking the reaction coordinate dependence of rate
constants as local, which allows us to find a simple analytical
solution of nonequilibrium stationary distributions for a gen-
eral functional form of the potentials of mean force Gi�y�.
The stationary solution then leads to various measurable
quantities of the motor complex on the single-molecule level,
some of which are examined here using a quadratic model
functional form of Gi with empirical parameters.

The paper is organized as follows. In the next section, the
swinging lever arm model of muscle contractions is briefly
reviewed with a special emphasis on its relationship to the
stochastic dynamics of conformational states. The stochastic
dynamical model is motivated from the molecular and struc-
tural point of view in Sec. II B through the coarse graining
associated with the introduction of two reaction coordinates,
the linear displacement and the conformational reaction co-
ordinate. The Brownian ratchet and power stroke perspec-
tives are discussed regarding their inter-relationships in Sec.
II C. In Sec. III A, the simple two-level version of the sto-
chastic dynamical model of the conformational reaction co-

ordinate is solved analytically for the nonequilibrium station-
ary states. The local rate constant approximation used is also
tested and justified using Monte Carlo simulations. The sta-
tionary solution is used in Sec. III B to examine some of the
properties of actomyosin complexes on the single-molecule
level, which are compared with experiments. Section IV con-
cludes the paper with a short discussion.

II. MECHANISM OF MOTOR OPERATIONS

A. Muscle contraction

In actomyosin complexes underlying muscle contractions
�1,23�, myosin heads subfragment 1 �S1� undergo diffusive
attachment/detachment cycles onto the actin filaments, while
changing its conformational states characterized by distinct
orientations of their lever arms �Fig. 2� �25,28�. The bio-
chemical nature of the overall process can be represented by
denoting a pair of such states as E1 and E2, and writing a
simple extension of the Michaelis-Menten mechanism
�29,30�

E1 + T�
k−h

kh

E2
* · T � E2 · D · P ——→

kp

E1
* + D + P � E1 + D + P,

�1�

where ATP, ADP, and phosphate are represented as T, D, and
P, respectively. The enzyme in the two different structural
states E1 and E2 are distinguished by the presence or absence
of the nucleotide substrates in the binding site. The second
and fourth steps are the conformational relaxations of the
“strained” enzymes E1

* and E2
* into their stable states E1 and

E2. By maintaining a constant supply of the fuel T and pre-
venting accumulations of the products D and P via external
matter reservoirs, stationary cyclic processes based on Eq.
�1� can be sustained.

Muscle contractions occur by S1 attachment/detachment
processes coordinated with the chemical and conformational
transitions of scheme �1�; E1 primarily occurs while bound to
an actin filament, whereas the myosin head is in solution
while in E2. The cyclic process for actomyosins interpreted
in terms of the free energy landscapes in Fig. 1�b� consists of
the following four steps.

�a� An ATP binds to an S1 bound to actin, causing its
dissociation, which is represented by a vertical jump from
the minimum y=0 of G1�y� of E1 to a strained conformation
with free energy G2�0�, or E2

*.

FIG. 2. �Color online� Swinging lever arm
mechanism of muscle contraction. The myosin
heads in strained states E1

* and E2
* are shown as

shaded. Binding �unbinding� of S1 to an actin
filament facilitates unbinding �binding� of phos-
phate �P�, ATP �T�, and ADP �D�, and vice versa.
The conformational reaction coordinate y is de-
fined here as the lever arm angle, and the distance
r between the center of the “hinge” and the actin
binding site is also shown.
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�b� The motor domain then re-adjusts its conformational
state to the new stable state y=y0, which entails the “reprim-
ing” of the lever arm.

�c� With the prepower stroke �transition-state� conforma-
tion at y=y0, the ATP binding site catalyzes the hydrolysis of
ATP to form ADP and phosphate. The complex binds to the
actin again, which leads to the release of phosphate �and
ADP�.

�d� The resulting conformational relaxation, the power
stroke, causes a large swinging motion of the lever arm back
to its position in the rigor conformation.

It is obvious that the mechanism described above should
be regarded as inherently stochastic; conformational changes
of a single motor head observed for example in optical twee-
zer experiments are highly noisy �31–35�, adding up to a
concerted cyclic process only on average. A number of quali-
tative observations based on Fig. 1�b� can be made at this
point: the prestroke repriming of lever arm on G2 occurs in
solution, and therefore the associated free energy released is
completely dissipated. One thus can write for the maximum
work derivable from a single power stroke in the reversible
limit as

Wrev = G1�y0� − G1�0� � �Gh, �2�

where �Gh=G2�0�−G1�0�. The efficiency � then satisfies

� =
W

�Gh
�

Wrev

�Gh
� 1, �3�

where W is the �nonreversible� work performed, showing
that the efficiency of actomyosin motors is fundamentally
limited by the need to “prime” the lever arm while detached,
in addition to the intrinsic irreversibility in each step. In con-
trast, the rotary motor F1-ATPase has three identical subunits
each taking turns in the analogous free energy transduction
cycles, such that a power-stroke of one subunit becomes the
“priming” for another, achieving the efficiency near 100%
�36�. For muscle contractions, however, where linear move-
ments on macroscopic scales need to be generated via col-
lective actions of billions of myosin units, the relatively low
efficiency near 20% �36� is inevitable, due to the need for
repriming the lever arm where the corresponding part of the
chemical free energy is completely dissipated.

B. Coarse-graining and reaction coordinates

In equilibrium, the probability distribution of the collec-
tion R of atomic coordinates in the system comprising a
motor complex, an actin filament, solvent water molecules,
nucleotides, and any ions can be written as

P�R� =
e−�V̂�R�

� dRe−�V̂�R�

, �4�

where V̂ is the total potential energy and 1/�=kBT is the
Boltzmann constant times temperature. A coarse-grained de-
scription of the system is made possible by choosing a set of
reaction coordinates, which we take as �x ,y�, where x is

defined as representing the position of the myosin head
center-of-mass along the direction of the actin filament as-
sumed to be fixed, while y is a conformational reaction co-
ordinate, dependent on the internal coordinates of the motor
complex �15�. Among the possible definitions of y are the
lever arm angle shown in Fig. 2, and the relative root-mean-
square deviation �RMSD� �37�, defined with respect to two
known reference structures �e.g., crystal structures� as ŷ= ŷ1
− ŷ2, where yj is the RMSD of atomic coordinates within the
motor head S1 relative to the reference structure j. The latter
choice of y is particularly well-suited for use in free energy
calculations using molecular dynamics �37�.

The reduced probability distribution of the reaction coor-
dinates is obtained from Eq. �4� as

Pi�x,y� = �
R�i

dR��x − x̂���y − ŷ�P�R�

=
e−�Gi�x,y�

�i � dx� dye−�Gi�x,y�

, �5�

where the second line introduces a generalized free energy,
or the potential of mean force �PMF� Gi�x ,y�, defined up to
an arbitrary constant as

e−�Gi�x,y� � �
R�i

dR��x − x̂���y − ŷ�e−�V̂�R�. �6�

In Eqs. �5� and �6�, we have introduced the set of sub-spaces
of the configurational space labeled by i=1,2, each corre-
sponding to those with actin-bound S1 without nucleotides,
and those with S1 in solution with bound nucleotides. The
integrations in Eqs. �5� and �6� are restricted to the respective
subspaces.

As is evident from Eq. �6�, the introduction of the coarse-
grained reaction coordinates entails a drastic reduction in the
dimensionality of the configurational space, and the suitabil-
ity of the particular choice of the reaction coordinate can
only be tested by explicit calculations of Gi based on realistic
molecular models of the protein. We also note that a very
recent study by Fischer et al. �38�, where a minimum energy
path connecting two distinct conformations of myosin head
has been identified within the conformational space using
computational methods, suggests a near-ideal case for which
y could be defined as the progression along such a path.

C. Brownian ratchet vs power stroke

Qualitative considerations of the known structural infor-
mation of actomyosin complexes as depicted in Fig. 2 natu-
rally lead us to the two different representations of the free
energy landscape shown in Fig. 1, with the corresponding
PMF defined by

e−�Gi�x� =� dye−�Gi�x,y�, �7a�
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e−�Gi�y� =� dxe−�Gi�x,y�. �7b�

The asymmetric downhill slope to the left near the binding
site x0 on actin in Fig. 1�a� is a consequence of the relative
stability of the near-rigor conformation of E1 compared to
the prestroke E1

* state, and the fact that the conformational
change E1

*→E1 would need to be accompanied by the net
movement of the S1 center-of-mass to the right �Fig. 2�. In
the Brownian ratchet perspective, the net flux is understood
as arising from the asymmetric quasiequilibrium distribution
established on G1 in Fig. 1�a�, which is subsequently spread
over evenly via �almost� free diffusions after the field has
been turned off �G2�. If we consider the most probable tra-
jectory of a single motor head within the same perspective,
however, it would still be represented by the series of arrows
depicted in Fig. 1�a�, with the “power stroke” of the Brown-
ian ratchet shown as the downhill drifting on G1 on the actin
filament. The power stroke in this case can conversely be
interpreted as the relaxation towards the establishment of the
asymmetric distribution of motor head position on G1 within
the former perspective, which is unavoidable in order for any
subsequent ratcheting to occur �Fig. 3�.

Within the unified point of view based on the general
PMF Gi�x ,y� and its one-dimensional projections, therefore,
the distinction between the two seemingly different perspec-
tives becomes a quantitative one �15�. The difference in par-
ticular centers on the extent to which the stochastic dynamics
of the motor head reaction coordinate, largely on G2�y�, is
affected by the thermal diffusion or concerted relaxations
toward the minimum in free energy. The question needs to be
addressed based on considerations of molecular structures,
for example, by calculating the diffusion coefficients of the
motor head on the PMF, which can be obtained using mo-
lecular simulation techniques �39�. In this paper, we adopt
the version of description using the free energy landscape
of the conformational reaction coordinate y represented by

Fig. 1�b�. The choice is appropriate for nonprocessive motor
protein systems such as actomyosins, where a typical motor
complex is expected to undergo more concerted movements
on average in its conformational space than in its positional
displacement.

III. STOCHASTIC DYNAMICS

The coarse graining of the level of description from the
full phase space variables R to the low-dimensional reaction
coordinates naturally renders the relevant dynamics to be
stochastic. The simplest such dynamics in the absence of
coupling between G1 and G2 can be described by the Lange-
vin equation

0 = Fex − Gi��y� − �iẏ + 	i�t� , �8�

where the overdamping has been assumed �ÿ	0�, Fex is the
external load, Gi��y�
dGi /dy, �i is the friction coefficient,
and the random forces 	i�t� have zero means and are uncor-
related:

�	i�t�� = 0,

�	i�t�	i�t��� = 2�ikBT��t − t�� . �9�

Equation �8� precludes the reactions that couple states in dif-
ferent subgroups i, which can be incorporated more easily in
the equivalent Fokker-Planck description as follows �6,12�:

�P1

�t
= −

�J1

�y
− kh�y�cP1 + k−h�y�P2 + kp�y�P2,

�P2

�t
= −

�J2

�y
+ kh�y�cP1 − k−h�y�P2 − kp�y�P2, �10�

where Ji is the flux on the free energy curve i given phenom-
enologically by the linear constitutive relation

Ji = v̄iPi − Di
�Pi

�y
. �11�

In Eq. �11�, Di is the diffusion coefficient, and the determin-
istic velocity v̄i in the simplified Smoluchowsky description
is obtained from the balance of the external load, the ther-
modynamic force −Gi�, and the frictional drag −�iv̄i:

Fex − Gi� − �iv̄i = 0 �12�

or

v̄i =
Fex − Gi�

�i
. �13�

The rate constants kh, k−h, and kp are those for the ATP bind-
ing �actin unbinding�, the reverse reaction of ATP unbinding
�actin binding�, and the prestroke dissociation of phosphate
�actin binding�, respectively �Fig. 1�b��. We ignore the rate of
reverse reaction corresponding to kp, known to be negligible
in reality �40�. The y dependence of the rate constants re-
flects the expectation that the catalyzed rates of each reac-
tions would depend strongly on the protein conformation.

FIG. 3. �Color online� The equivalence of the Brownian ratchet
and the power stroke perspectives. P1

* and P2
* are the quasiequilib-

rium distributions of the motor head displacement x under the PMF
G1�x� and G2�x�, respectively �Fig. 1�a��. After the potential has
been switched on to become G1, the near-uniform distribution �dot-
ted line at the bottom� has to evolve toward P1

*, generating a net
flux equivalent to the power stroke depicted as the downhill drift in
Fig. 1�a�. Note that the true stationary distributions P1�x� and P2�x�
will differ from quasiequilibrium ones due to the contributions of
transient distributions indicated by arrows.
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The concentration of ATP is denoted as c, assumed to be
maintained as constant throughout the system by external
controls.

A. Local rate constant approximation

For the reaction coordinate dependence of the rate con-
stants, we use the local rate constant approximation

kh�y� = kh��y� ,

k−h�y� = k−h��y� ,

kp�y� = kp��y − y0� , �14�

justified by the fact that the magnitude of the conformational
change �y0 in Fig. 1�b�� between the two minima is much
larger �of the order of 10 Å� than the range of fluctuations
around each structural state within which the reaction cataly-
sis remains effective. The use of delta functions for the rate
constants’ dependence on the center-of-mass displacement x
along the filament has previously been considered by Jüli-
cher et al. �13� in the context of processive motor proteins.
Bagdassarian and Astumian �41� have also used delta func-
tion rates in their treatment of conformational fluctuations of
membrane transporters. However, only the simplest piece-
wise linear potential models have been considered in both
studies.

In regions where y�0 and y�y0, the stationary solution

P̄i�y� to Eqs. �10� for which �Pi /�t=0 satisfies Ji=ci

=const., or from Eq. �11�,

�P̄i

�y
= −

ci

Di
+ �i�Fex − Gi��P̄i, �15�

where �i
1/Di�i. A general solution to Eq. �15� can be
written as

P̄i
�n� = Ai

�n�e�i�Fexy−Gi�y�� + Bi
�n�e�i�Fexy−Gi�y���

0

y

dze��Gi�z�−Fexz�,

�16�

where Ai
�n� and Bi

�n�=−ci /Di are the coefficients to be deter-

mined by the boundary conditions for P̄i
�n�, and the super-

scripts with n=1,2 ,3 distinguish three different regions
y�0, 0�y�y0, and y
y0, respectively. Since

lim
y→±�

�Gi�y� − Fexy� = � �17�

for constant Fex, Bi
�1�=Bi

�3�=0. In particular, when the rate

constants vanish for all y, P̄i has to reduce to the equilibrium
distribution

P̄i � e�Fexy−Gi�y��/kBT �18�

from which follows the Einstein relation �i=1/kBT=� or

Di =
kBT

�i
. �19�

For the intermediate region 0�y�y0, Bi
�2��0 in general.

Imposing the boundary conditions at y=0 and y=y0, the fol-
lowing general solution can be obtained �Appendix A�:

P̄1�y�
N

=

e��Fexy−G1�y�� �y � 0� ,

e��Fexy−G1�y���1 +
ckhkpg1f2D2

D1Q
�

0

y

dze��G1�z�−Fexz�� �0 � y � y0� ,

�1 +
c�1khkpg1f2D2

D1Q
�e��Fexy−G1�y�� �y0 � y� ,

� �20a�

P̄2�y�
N

=

ckhg1�D2 + kpf2�2�

Q
e��Fexy−G2�y�� �y � 0� ,

ckhg1

Q
e��Fexy−G2�y���D2 + kpf2�2 − kpf2�

0

y

dze��G2�z�−Fexz�� �0 � y � y0� ,

ckhg1D2

Q
e��Fexy−G2�y�� �y0 � y� ,

� �20b�

where N is the normalization constant determined by

�dy�P̄1�y�+ P̄2�y��=1, and

�i = �
0

y0

dze��Gi�z�−Fexz�,

gi = e−�Gi�0�,

f2 = e��Fexy0−G2�y0��,

Q = �k−hg2 + kpf2�D2 + k−hkpf2g2�2. �21�
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As a simplest model potential based on Fig. 1�b�, we take

G1�y� =
1

2

1y2,

G2�y� =
1

2

2�y − y0�2 + �G , �22�

for which Fig. 4 shows that the pair of stationary distribu-
tions show increasingly sharp deviations from the equilib-
rium Gaussian shape as c increases from zero, where the rate
constant values measured in a kinetic experiment �40� were
used; kh=6�106 M−1 s−1, k−h=0, and kp=45 s−1. The devia-
tions in the region 0�y�y0 of the stationary distribution

P̄1�y� and P̄2�y� �Fig. 4�, and the cusps at y=0 and y=y0 in
particular, are due to the one-sided cyclic flux shown in Fig.
1�b�.

We note a number of features from the stationary solution
�20�; for c=0 or kh=0, it reduces to the equilibrium distribu-

tion of E1, Eq. �18�, whereas P̄2=0 since the rate at y=y0 is
one-sided toward G1. When y0=0, it is verified that the de-
tailed balance

ckhP̄1 = �kp + k−h�P̄2 �23�

is satisfied at y=0. For y0�0 in general, the detailed balance
is broken both at y=0 and y=y0. It should also be noted that
in our simplified treatment of chemical reactions where the
phosphate release rate at y=y0 is one-sided and we have
chosen k−h=0, the more general detailed balance condition
often invoked in theoretical models, k1←2�y� /k2←1�y�
=exp�−��G1�y�−G2�y���, is not satisfied. An establishment
of equilibrium between nonvanishing populations of G1�y�
and G2�y� is therefore precluded. Although generalizations to
remove such a restriction should be straightforward, the fact
that the biochemical rates of proteins are expected to be op-
timized for the predominant cyclic fluxes in Fig. 1�b� makes
such an equilibrium state physically rather irrelevant.

The effects of nonlocal dependence of rate constants on
reaction coordinate have also been examined using the fol-
lowing generalized form of Eqs. �14�:

kh�y� =
kh

�2��1/2�h
e−y2/2�h

2
,

k−h�y� =
k−h

�2��1/2�−h
e−y2/2�−h

2
,

kp�y� =
kp

�2��1/2�p
e−�y − y0�2/2�p

2
, �24�

where �h, �−h, and �p represent the widths of the Gaussian
distribution of rates around their centers �Appendix B�. Fig-
ure 5 shows the typical behavior of stationary distributions as
functions of the nonlocal character of the rate constants rep-
resented by the width parameter �h=�p=�–h
�. As � in-

creases from zero, the strong asymmetry of P̄i becomes
quickly rounded off, and for ��0.3 in radians, the stationary
states appear near equilibrium for c=0.1 �M. The mean
value of y on the level 1,

�y�1 =
� dyyP1�y�

� dyP1�y�
�25�

is a scalar measure of the nonequilibrium character of sta-
tionary states, and as shown in Fig. 6, analogously displays a
rapid quenching of the asymmetry as � increases.

FIG. 4. �Color online� The sta-

tionary population P̄1�y� �solid

lines� and P̄2�y� �dotted lines� at
various different ATP concentra-
tions: �a� c=0.01, �b� c=0.1, �c�
c=1 �M. Other parameter values
are �
1=�
2=2, y0=� /4, D1

=D2=0.2 s−1, and Fex=0.

FIG. 5. �Color online� Stationary distributions of P1 and P2 with
different width of rate constants � in Eqs. �24�. The solid, dotted,
and dashed lines are for �=0 from Eqs. �20�, and the Monte Carlo
results for �=0.1 and 0.3, respectively. Parameter values are the
same as in Fig. 4 with c=0.1 �M and k−h=0.
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The strongly nonuniform reaction coordinate dependence
of rate constants is thus essential for the production of non-
equilibrium stationary states, which sustains the asymmetric
cyclic flux shown in Fig. 1 by spatial segregations of differ-
ent reactions in conformational spaces. Direct measurements
or computations of such reaction coordinate dependences of
rate constants are difficult in practice, and the local rate con-
stant approximation �14� can serve as physically reasonable
and quantitatively reliable assumption which allows for a
drastic simplification of the analysis of stochastic dynamical
models.

B. Measurable properties in stationary states

Statistical distribution of forces exerted by a single mol-
ecule of S1 has been measured in optical tweezer experi-
ments �33�. Taking the reaction coordinate y as the angle of
the lever arm, the longitudinal force Fl exerted on the actin
filament is related to the thermodynamic force �torque� by
−rFl=−G1��y�=−
1y, where r is the distance between the
center of lever arm rotation and the actin binding site �Fig.
2�. The distribution of forces exerted while bound is there-
fore given by

P�Fl� �� dy��rFl + 
1y�P1�y� � P1�− rFl/
1� . �26�

Figure 7 shows a comparison of the theoretical result �20�
and the experimental data from the optical tweezer experi-
ment from Ref. �33� using Eq. �26� and the estimated values
of the structural parameters y0=� /4 and r=6 nm based on
the crystallographic structure of myosin �42�. In the absence
of ATP �c=0�, the force distribution is symmetric, and the
width of its distribution allows for the determination of the
harmonic free energy parameter �
1=2, which includes the
stiffness contribution arising from the optical trap specific to
the experiment. With c=0.1 �M, a nonvanishing average of
the forces develops, which would translate into the sliding
motion of the filament. The use of adjustible parameters in
fitting Eq. �20a� to the experimental data in Fig. 7 limits its

implications under the current treatment. Using results of
first-principle calculations of Gi�y� based on molecular simu-
lations could potentially provide unambiguous tests of the
theoretical assumptions.

An example of the mean quantities derivable from Pi is
the average force �Fl�, which will be proportional to �y�1

shown in Fig. 6 on a single-molecule level. The qualitative
behavior shown in Fig. 6 agrees well with the typical results
of in vitro motility assays measuring the stationary sliding
velocity of the filaments. The proportionality constant of the
mean force to the sliding velocity would be equal to the
effective friction coefficient of the motion in the x direction,
and would most likely reflect strong effects of intermolecular
interaction and coordinations beyond the level of description
in the current paper.

IV. CONCLUSION

The use of a conformational reaction coordinate offers a
useful platform to describe the nonequilibrium stochastic dy-
namics of nonprocessive motor proteins such as actomyo-
sins, via the PMF Gi�y� that has direct connections to struc-
tural aspects of the protein constituents. In particular, explicit
calculations of the energy landscapes as well as the dynami-
cal properties such as the diffusion coefficients �via the
Green-Kubo relation� using techniques of molecular simula-
tions �43–47� would allow promising directions of bridging
simple models of statistical physics, atomic structures from
crystallographic studies, and single-molecule experiments.

The local rate constant approximation, justified by the es-
sential nature of the strongly nonuniform conformational de-
pendence of rate constants in sustaining nonequilibrium con-
ditions, allows for a simple and general analytical form of
stationary solutions. The model results represented by Eqs.
�20�, or its more refined variants, valid for arbitrary functions
Gi�y�, could play useful roles in many other similar formu-
lations for different systems.

ACKNOWLEDGMENTS

We thank Kent Ervin, Sean Casey, and David Leitner for
many insightful comments and suggestions.

FIG. 6. �Color online� The mean value �y�1 averaged over the
distribution P1 as a function of c with different values of �. The
solid line is for �=0 from Eqs. �20a�, and the circles, squares, and
triangles are the Monte Carlo data for 0.01, 0.2, and 0.3, respec-
tively. Parameter values are the same as in Fig. 4.

FIG. 7. �Color online� Distribution P�Fl� of forces exerted by a
myosin head to the actin filament while bound. The dotted and solid
lines are from Eqs. �20a� and �26� with c=0 and 0.1 �M, respec-
tively. The rectangles and circles are the experimental data in the
given conditions from Ref. �33�. Parameter values are the same as
in Fig. 4 except D1=D2=0.22 s−1.
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APPENDIX A: STATIONARY SOLUTION

The boundary conditions at y=0 and y=y0 include the

continuity of P̄i:

P̄1�0+� = P̄1�0−� ,

P̄2�0+� = P̄1�0−� ,

P̄1�y0
+� = P̄1�y0

−� ,

P̄2�y0
+� = P̄1�y0

−� . �A1�

In contrast, the functions P̄i are not differentiable at the two
boundary points. We integrate both sides of Eqs. �10� over an
immediate neighborhood of the singular points to determine
the boundary conditions for the first derivatives, which yields

P̄1��0
+� − P̄1��0

−� =
khc

D1
P̄1�0� −

k−h

D1
P̄2�0� ,

P̄2��0
+� − P̄2��0

−� = −
khc

D2
P̄1�0� +

k−h

D2
P̄2�0� ,

P̄1��y0
+� − P̄1��y0

−� = −
kp

D1
P̄2�y0� ,

P̄2��y0
+� − P̄2��y0

−� =
kp

D2
P̄2�y0� , �A2�

where P̄i��y�
dP̄i /dy. Using Eq. �16� for Eq. �A2�, the de-
termination of the unknown coefficients �Ai

�n� ,Bi
�n�� is facili-

tated by expressing the boundary conditions as matrix equa-
tions

C�n� = �
A1

�n�

B1
�n�

A2
�n�

B2
�n�
� �A3�

and

C�3� = M32C
�2� = M32M21C

�1� 
 M31C
�1�. �A4�

From the boundary conditions �A1� and �A2�, the matri-
ces are given by

M21 = �
1 0 0 0

ckhg1/D1 1 − k−hg2/D1 0

0 0 1 0

− ckhg1/D2 0 k−hg2/D2 1
� ,

M32 = �
1 0 �1kpf2/D1 �1�2kpf2/D1

0 1 − kpf2/D1 − kpf2�2/D1

0 0 1 − �2kpf2/D2 − �2
2kpf2/D2

0 0 kpf2/D2 �2kpf2/D2 + 1
� ,

�A5�

where �i, gi, and f2 are given by Eqs. �21�, and

M31 = �
1 −

�1�2kpf2ckhg1

D1D2
0

�1kpf2

D1
+

�1�2kpf2k−hg2

D1D2

�1�2kpf2

D1

ckhg1

D1
+

kpf2�2ckhg1

D1D2
1 −

k−hg2

D1
−

kpf2

D1
−

kpk−hf2�2g2

D1D2
−

kpf2�2

D1

ckhg1�2
2kpf2

D2
2 0 1 −

�2kpf2

D2
−

�2
2kpf2k−hg2

D2
2 −

�2
2kpf2

D2

−
ckhg1

D2
��2kpf2

D2
+ 1� 0

kpf2

D2
+

k−hg2

D2
��2kpf2

D2
+ 1� �2kpf2

D2
+ 1

� . �A6�

Imposing the boundary conditions at y= ±�, Bi
�1�=Bi

�3�=0
using Eq. �A6�, the following relation can be obtained:

A2
�1� =

ckhg1

Q
�D2 + kpf2�2�A1

�1�, �A7�

where Q is defined in Eqs. �21�. It should be noted that the
two conditions B1

�3�=0 and B2
�3�=0 in fact both lead to Eq.

�A7�, which is due to the overall conservation law of the
total probability

�

�t
�P1 + P2� = −

�

�y
�J1 + J2� �A8�

from Eqs. �10�. Using Eqs. �A4�, �A6�, and �A7�, the remain-
ing nonvanishing coefficients can all be expressed in terms
of A1

�1�:
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A1
�2� = A1

�1�,

B1
�2� =

ckhg1kpf2D2

D1Q
A1

�1�,

A1
�3� = 1 +

�1kpf2g1ckhD2

D1Q
A1

�1�,

A2
�1� = A2

�2� =
ckhg1

Q
�D2 + kpf2�2�A1

�1�,

B2
�2� = −

ckhkpf2g1

Q
A1

�1�,

A2
�3� =

ckhg1D2

Q
A1

�1�. �A9�

The normalization condition fixes the last coefficient A1
�1�,

and the solution �20� is obtained.

APPENDIX B: MONTE CARLO SIMULATIONS

Direct Monte Carlo simulations were performed to solve
the stochastic model defined by the Fokker-Planck equations
�10� with the nonlocal form of the rate constants �24�. We
can write the equivalent Langevin representation in dis-
cretized form as follows:

yn+1 = yn + ẏn�t ,

ẏn = �
i=1,2

�iln
�− Di�Gi��yn� + f in� , �B1�

where yn is the value of y at time t= t0+n�t �n=0,1 , . . . � and
�iln

is the Kronecker delta, in which ln=1,2 is a dynamical
binary variable representing which of the two levels the sys-
tem is residing at a time t= tn, evolving with the transition
probabilities

P2←1 = ckh�yn��1ln
,

P1←2 = �k−h�yn� + kp�yn���2ln
. �B2�

The random forces f in on the level i at time tn are taken from
Gaussian distributions such that

�f in� = 0,

�f inf jm� =
2Di

�t
�ij�nm. �B3�

At each time step, the displacement and the jump moves,
each given by Eqs. �B1� and �B2� were attempted with equal
probabilities, and the stationary distributions of P1�y� and
P2�y� were constructed by collecting histograms over the
time domain. The time step and the number of steps used
were �t=10−2 sec and N=3�107 for most cases, except for
very small width of rate constants, for which we used �t
=10−4 s and N=109.
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